Sex-based comparison of CD4+ T cell DNA methylation in lupus reveals proinflammatory epigenetic changes in men.

01 Oct 2022
Ali M, Coit P, Sawalha AH

Systemic lupus erythematosus (SLE) is more common in women than men, but the disease is more severe when it affects men. Lupus CD4+ T cells demonstrate dysregulated DNA methylation patterns. The purpose of this study was to investigate genome-wide CD4+ T cell differential DNA methylation between men (n = 12) and women (n = 10) with SLE. DNA methylation was evaluated using the Infinium MethylationEPIC array, and differences between male versus female SLE patients were calculated with probe-wise linear regressions with adjustment for age and disease activity. We identified 198 hypomethylated and 108 hypermethylated CpG sites in CD4+ T cells isolated from male compared to female SLE patients, annotated to 201 and 102 genes, respectively. A great proportion of these genes were related to apoptosis and immune functions. Among differentially methylated genes, CASP10, which is involved in the extrinsic apoptotic pathway, and multiple genes involved in T cell function and differentiation such as ELAVL1, UHRF1, and SMAD2, were hypomethylated in men compared to women with SLE. Importantly, network analysis of differentially methylated genes revealed a pattern consistent with increased activation of ROCK, PP2A, PI3K, and ERK1/ERK2 in men compared to women with SLE. These data provide epigenetic evidence suggesting activation of key T cell pathways in men compared to women with SLE and shed new light into possible mechanisms underlying increased SLE disease severity in men.