International comparisons of laboratory values from the 4CE collaborative to predict COVID-19 mortality.

13 Jun 2022
Weber GM, Hong C, Xia Z, Palmer NP, Avillach P, L'Yi S, Keller MS, Murphy SN, Gutiérrez-Sacristán A, Bonzel CL, Serret-Larmande A, Neuraz A, Omenn GS, Visweswaran S, Klann JG, South AM, Loh NHW, Cannataro M, Beaulieu-Jones BK, Bellazzi R, Agapito G, Alessiani M, Aronow BJ, Bell DS, Benoit V, Bourgeois FT, Chiovato L, Cho K, Dagliati A, DuVall SL, Barrio NG, Hanauer DA, Ho YL, Holmes JH, Issitt RW, Liu M, Luo Y, Lynch KE, Maidlow SE, Malovini A, Mandl KD, Mao C, Matheny ME, Moore JH, Morris JS, Morris M, Mowery DL, Ngiam KY, Patel LP, Pedrera-Jimenez M, Ramoni RB, Schriver ER, Schubert P, Balazote PS, Spiridou A, Tan ALM, Tan BWL, Tibollo V, Torti C, Trecarichi EM, Wang X, Consortium for Clinical Characterization of COVID-19 by EHR (4CE), Kohane IS, Cai T, Brat GA

Given the growing number of prediction algorithms developed to predict COVID-19 mortality, we evaluated the transportability of a mortality prediction algorithm using a multi-national network of healthcare systems. We predicted COVID-19 mortality using baseline commonly measured laboratory values and standard demographic and clinical covariates across healthcare systems, countries, and continents. Specifically, we trained a Cox regression model with nine measured laboratory test values, standard demographics at admission, and comorbidity burden pre-admission. These models were compared at site, country, and continent level. Of the 39,969 hospitalized patients with COVID-19 (68.6% male), 5717 (14.3%) died. In the Cox model, age, albumin, AST, creatine, CRP, and white blood cell count are most predictive of mortality. The baseline covariates are more predictive of mortality during the early days of COVID-19 hospitalization. Models trained at healthcare systems with larger cohort size largely retain good transportability performance when porting to different sites. The combination of routine laboratory test values at admission along with basic demographic features can predict mortality in patients hospitalized with COVID-19. Importantly, this potentially deployable model differs from prior work by demonstrating not only consistent performance but also reliable transportability across healthcare systems in the US and Europe, highlighting the generalizability of this model and the overall approach.